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Abstract. A perturbation scheme in non-equilibrium thermo-field dynamics is developed 
by taking into account the initial-state correlations. Two methods are proposed: in the 
first method the time dependence of amplitudes and  their initial values are  evaluated by 
two independent perturbation schemes while in the second method the two perturbation 
schemes are  combined by use of a fictitious past. 

1. Introduction 

The path-ordered formalism has been widely used [l-41 as a perturbation scheme in 
non-equilibrium statistical physics. A recent review is given in [5] and recent applica- 
tions to a relativistic theory are described in [6]. It is well known that the inclusion 
of non-Gaussian initial-state correlations is one of the main problems to be solved in 
order to obtain a consistent perturbation scheme [7,8]. The initial correlations may 
be neglected if the initial state is given in the infinite past but they are important in 
the study of physical systems near the initial time. 

When one wishes to include the initial correlation effects in a perturbation scheme 
in a consistent way, one needs to consider two kinds of perturbation, since the 
Hamiltonian and the initial density matrix are different. 

In this paper, we propose a systematic perturbation method for non-equilibrium 
phenomena, including initial-state correlations. The method is based on thermo-field 
dynamics (TFD) [9] as recently reviewed in [lo].  The advantage of TFD lies in the fact 
that this formalism is completely based on the operator formalism in a linear space 
and that the notion of states can be introduced. Recently, attempts to extend equilibrium 
TFD to non-equilibrium TFD have been proposed [ 11-14]. One of the present authors 
( H M )  proposed a framework for specifying the initial-state vacuum with arbitrary 
particle distributions in the form of thermal-state conditions and developed a causal 
perturbation scheme [12]. I n  this paper we refine the treatment of the initial-state 
correlations. We propose two perturbation methods. One is based on a separate 
perturbative evaluation of the initial amplitudes and their time-development, which 
we will call the double expansion method. The other is based on a single perturbation 
scheme by considering a fictitious past for the evaluation of initial amplitudes, which 
we will call the unified expansion method. 

The paper is organised as follows. In 5 2 ,  the framework of TFD in non-equilibrium 
phenomena is summarised. In  § 3, a framework of perturbation schemes is presented 
in a convenient form for subsequent discussions. In Fi 4, the double expansion method 
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is presented. In  § 5 ,  the unified expansion method is presented, in which the evaluation 
of initial values is unified as a time development in a fictious past. Section 6 is devoted 
to concluding remarks. 

2. Non-equilibrium thermo-field dynamics 

A quantum field system with a given particle distribution in space is analysed by the 
following framework in thermo-field dynamics (TFD) [9- 141. 

2.1. Quantum algebra 

There are two sets of operators a and a' which form independent algebras: 

[A, I?]* = 0 A E  a and g~ a' (2.1) 

where the anticommutator ( + ) is to be used if both A and l? are fermionic, otherwise 
the commutator ( - )  must be taken. The algebra in a is the same as that required in 
the conventional quantum theory, so that Hermitian conjugation (denoted here by a 
dagger) is defined, the canonical relations are given and  the existence of a Hamiltonian 
is assumed. Between a and a' there exists a one-to-one mapping, called the tilde 
conjugation, which consists of the following rules: 

(2.2a) 

(2.2b) 

(2.2c) 

(iv) [A]'= A. (2.2d) 

2.2. Thermal state condition 

There exists a vacuum IG). Physical amplitudes are given by vacuum expectation 
values of operators in a. The vacuum 1 G) is specified at the initial time to by a Hermitian 
operator n(to) in a as 

A(to)IG) = (+ exp(fi(t ,J)AT(to)lG) (2.3) 
where 

A( to)  = n( to) - ii( t o ) .  

a(?,) is expressed in terms of operators at t o ,  A(?,) is an arbitrary operator at to and 
(+ = 1 for bosonic A and U = i for fermionic A. The thermal-state condition (2.3) leads 
to 

A( t ) IG)=  U e x p ( h i ( t , ) ) ~ ' ( t ) ~ G )  (2.5) 
where 

A( 1 )  = exp( iH(  t - t,j)A( t o )  exp(- iH(  t - to)). (2.6) 
The operator C l ( ? , )  fixes the particle distribution at the initial time t o .  It can be shown 
that the above framework leads to the relation [12] 
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The thermal doublet A " (  t )  is defined as 

The time development of A" ( 2 )  is obtained from the rule (2.2) and is summarised as 

A " ( [ )  =exp(iZ?(t-- t o ) )A"( to )  exp(-ifi( t- t , j)  (2.9) 

where 

Z ? = H - f i .  (2.10) 

We note that, when a time-dependent external disturbance exists, the Hamiltonian 
can depend on time through coefficients. In this case the Hamiltonian is expressed 
by operators at to as H = H ( A (  t o ) ;  t )  and will be denoted by H I (  t o )  (or in short notation 
H I ) .  Naturally, (2.9) is modified as 

(2.11) A"( t )  = ii( t ,  t o ) - 'An(  t o )  ii( t ,  t o )  

with 

(2.12) 

3. Generalised Cell-Mann-Low formula 

In this section we will give a perturbation scheme in TFD in a convenient form for the 
subsequent discussions. In non-equilibrium TFD, we deal with two operators HI  and 
R( to) ,  which contain, in general, interaction parts. For example, if the initial state is 
prepared as equilibrium with an applied external force which is switched off at t o ,  
then fl( t o )  may be expressed as R( t o )  = $p( H( t o )  + F( t o ) )  with F( t o )  representing an 
external effect. Therefore, we must develop a perturbation scheme to calculate time 
development together with thermal-state conditions. 

Let us assume that H I  and R are separated into an unperturbed part and an 
interaction part 

Hi = Hoi + HI,  (3.1) 

R = R,+R, .  (3.2) 

Hereafter, we omit, for simplicity, writing the explicit dependence on t o ,  unless it is 
necessary. Note that, even if H I  is time independent, Hor and H , ,  can be time dependent. 
The unperturbed 0, defines the unperturbed initial state IG,) which satisfies the 
thermal-state condition 

A(to)IGo)= (+ exp(&Ji*(to)lGo) (3.3) 

where A(  t o )  is an arbitrary operator at t o .  

2fr= H , B ( t - t , , j + H , , B ( t , - r )  

Let us introduce a combined Hamiltonian X ,  defined by 

where 0 is the step function and H i l  is defined by 

H I )  = 2p-'fl  

(3.4) 

(3.5) 
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with ,B being a parameter related to the inverse of temperature. Then we define an 
operator whose time dependence is determined by 2, 

(3.6) 4: (1) = a t ,  ~ o ) - ' 4 x r & ( t ,  4,) 
where 

L( t, t o )  = T exp( -i 5,: dt '  k,,) (3.7) 

and 

2, = x, - 2,. (3.8) 

For t 2  tor  ( L U H ( f )  represents the Heisenberg field. Corresponding to (3.1) and (3.2), 
we have 

2, = ai.,, + (3.9) 
with 

go,= e(t-to)Ao,+e(t,,-tt)l?r20 (3.10) 

Go(?, t o )  = T exp( -i 1,; dt '  Ji0,.) 

and 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

with 

& , ( t ) =  i q t ,  to)-'&,,ii"(t~ to) .  (3.15) 

By noting that operators defined by 

[A"IG = exp(h )A"  exp(-fi) (3.16) 

satisfy the thermal-state condition 

(GI[AIG = a * ( G l [ A - l ~  (3.17) 
we have 

(GI[TA",O..  . BY,(t')l,/G) 

= (Gl [T i ( t8 ,  to)A"(t) .  . . BY(t')],lG) (3.18) 
where A " ( t )  is a field in the interaction representation defined by 

A " ( t ) =  i&(t, to)-'A:(to)Co(t, t o )  (3.19) 
and tB  is a time larger than ( t . .  . t ', to) .  



Non-equilibrium thermoTfield dynamics 6547 

Next we rewrite the vacuum 1 G) in terms of the vacuum of the interaction representa- 
tion IGJ, following the same procedure presented in [ 10, 151. By use of the thermal-state 
condition (3.3), we can show that the state exp(-fi) exp(fi,)lG,) satisfies the same 
thermal-state condition as /G).  Therefore we have 

IG) = exp(-fi(t,)l exp(fidt ,))lG,,)C(R) (3.20) 

with C(R)  being a renormalisation constant. Since 

exp(-2fi( t o ) )  exp(2fi0( ti l))  = t o ,  to - ip) (3.21) 

with 

G i r o ,  tu-ip) = T,exp ( i [ I '  dz 6 c , , ( z ) )  

ficl ,(z) = exp(-itj,,,(z - t u ) ) f i n I ( t o )  exp(ifi,,(z - to)) 

(3.22) 

(3.23) 

ti  -I@ 

and T, being the path-ordered product, and since, for rAs to ,  

[ ; ( ? A ,  to) J (  to, to- ~ ~ ) ] G u I  Go) = [U( f A ,  t A  T ip )lo01 GO) (3.24) 

then (3.18) is rewritten as 

(GI[TA",t). . . B L ( ~ ' ) I G I G )  

(3.25) 

The renormalisation constant C(n)  was determined to satisfy (GIG)=  1. Note that, 
in (3.25), the final time t s  is larger than t, . . . , t ' ,  to and the initial time t A  is smaller 
than t, . . . , t', t o .  The formula (3.25) is the generalised Gell-Mann-Low formula which 
will be used in the following discussions. 

4. Double expansion method 

Let us take in the formula (3.25) 

t R  + cc tA = t ,  t , .  . . , t ' >  to. (4.1) 

Then for t > to, the Hamiltonian is H ,  and for the operator U( t o ,  t o+ ip ) ,  the Hamil- 
tonian is Hi). 

Let us assume that a,, is expressed by operators, ($:, (I/,), in a diagonal form 

Oil= -1 i$l(Inf,)$, (4.2) 

where J; is a c number. Assuming that 4, and $: satisfy canonical relations, we have 

(4.3) 4, I Go) = ~ ~ 8 6 ,  I Go). 

The operators defined by 

a, = (1 - a;J;)-' ?( 4, - a,dx6:) ( 4 . 4 ~ )  

a', = ( l - a ~ . ~ ) - ' / ' ( i L 1 , - c r ~ v ~ $ I )  (4.4b) 

annihilate the vacuum IG,) 

Go) = ;!I Go) = 0 (4.5) 
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and satisfy the same canonical relations as 4,. Therefore, we can construct a complete 
set of state vectors on lGn) by a cyclic operation of a ;  and 6:. Then we have 

1 = c 4:mlG")(G,ldnm (4.6) 
n.m 

where dnm is the abbreviation of q5:Ji with 4; being a complete set of operators 
constructed from {a , }  and G,,, from { L ? : } .  The completeness relation (4.6) in the 
interaction representation can be also expressed as 

with 

(4.7) 

( 4 . 8 ~ )  

(4.8b) 

( 4 . 9 ~ )  

(4.9b) 

( 4 . 1 0 ~ )  

(4.1 Ob) 

(4.1 1 )  

(4.12) 

(4.13) 

(4.14) 
Since qn,, and q:m are expressed by the original fields, I)!, I),, 4,, $:, at r,, through 
(4.111, the calculation of (4.13) is divided into two steps. At first we calculate perturba- 
tively 

(G,,l[TC(W, t , l ) A " ( t ) .  . . B " (~ ' )C ' (~O) ]GO~GO)  

and 

(G,,/[C'( t o )  u ( t , , ,  to+ iP )],,I G,,) 
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c 
Figure 1. Initial-state correlations. 

according to separate perturbation schemes and then we superpose them with proper 
weights. As shown in figure 1, the N-point function is expressed as the superposition 
of ( N  + 1)-point functions with I values of time fixed at t = to .  

When the initial time is chosen in the infinite past (to+ -CO) or in a sufficient past 
compared to the characteristic relaxation time, A" ( t )  . . . B Y (  t ' )  and so:,,,( to)  are discon- 
nected except for soo= 1 due to the decaying property 

(Gol[TG(m, to)A"(O . . . B Y ( t ' ) U ( t o ,  to+iP)l~oIGo) 
( Go1 U ( t o  9 t o  + iP )I Go) - (Gol[Tfi(-~o, - m ) A " ( t ) .  . . BY(t')]GO(GO) (4.15) 

that is, the initial correlation is negligible. This corresponds to the perturbation scheme 
of Keldysh in the path-ordered formalism [ 2 ,  161. It is worthy of note that, in this 
case, only the first term in the right-hand side of (3.10) survives. Equation (4.15) is 
very similar to the corresponding expression for systems in thermal equilibrium, the 
only difference being the possible time dependence of the coefficients in HI, and Ha,. 

1"- -x 

5. A unified perturbation method 

The formula (4.13) is convenient in the sense that independent perturbation schemes 
are usable for the valuation of time dependence and initial conditions, although one 
must sum up contributions coming from the initial-state conditions. Therefore when 
such contributions are small, this formula is useful, for example, in the case when the 
time variables involved are sufficiently far from the initial time. However, sometimes 
one may need the infinite sum of corrections. In this case it is more convenient to 
develop a perturbation scheme in a unified way. 

In formula (3.24) take t s  +CO and f A  + --Co. We have 

(Gl[TA",t). . . BXt ' ) IGlG) 
(GO([TG(W, --Co)A"(t). . . BY( t ' )U ( -m,  -m+iP)]c;olGo) 

(5.1) 

From (3.9) and (3.10), the unperturbed Hamiltonian go, and the interaction Hamil- 
tonian X,, change at t = to. 

Let us assume that Ifno and Ha, are given as bilinear functions of canonical variables 

I f n o  = c w,+,9, (5.2) 

- - 
(Golu(-m, --CO+ iP)IGd 

( $ 8 ,  CL:) ( [ + I ,  4;1-2 = 4,) as 

Hor = 9TE,,9, .  (5.3) 
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Then1; in (4.2) is given by 

1; = exp( - P w l  1. (5.4) 

By use of the matrix function U (  t, t o )  which satisfies 

( 5 . 5 ~ )  
(5.5b) 

we can write 

Then, the unperturbed propagator is given as 

(5.8b) 

where V,(f) is given by (4.12). The change of the Hamiltonian at t = to inevitably 
makes the phenomena time dependent, even if the external perturbations are time 
independent. Therefore vacuum expectation values are not functions of relative times 
only. 

As in the equilibrium case [15], the end operator u ( - W ,  - W + i p )  in (5.1), is 
disconnected from other operators due to damping properties for interacting quantum 
field systems. The formula (5.1) is then simplified as 

(GI[TA",t). . . wf(r')lclG) 

=(G,/[Tii(co, - c o ) A " ( t ) .  . . B Y ( f ' ) ] G O ~ G O ) .  (5.9) 

It is worthwhile stressing that, although expression (5.9) is formally similar to the one 
for equilibrium, the operator I?(=, -E) is different in t,he two cases. This is evident 
from (3.13) and (3.10). For a non-equilibrium system, 2, is in general the sum of two 
different operators for r > to and t < r , ) .  Besides, H,, can have explicit time dependence 
through its coefficients. In the above procedure the initial-state correlations are inter- 
preted as an  effect of the evolution of the vacuum lGo) in a fictitious past from 
-E to l o .  

6. Concluding remarks 

In this paper, we have developed a systematic perturbation theory in  non-equilibrium 
TFD, by taking into account the initial-state correlations. Two methods were proposed; 
one is a double expansion method where time dependence of amplitudes and their 
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initial values are evaluated in different perturbation schemes while the other is a unified 
expansion method where the two perturbation schemes are combined by considering 
a fictitious past. 

Since the initial condition in our formalism is determined by R which is in general 
not commutable with H ,  the time translation invariance is broken. This breakdown 
of the time translation invariance is represented in the perturbation scheme both in 
the fact that the time region of t > to  is considered and in the fact that the interaction 
Hamiltonian contains explicit time dependence. In particular, the self-energies are 
not functions of relative time. This fact leads to time-dependent energy shifts and 
particle distributions. A method to consider such effects has been discussed in [13] 
and [ 141 and a similar procedure can be applied in the present perturbation schemes. 
The practical applications of the present perturbation schemes will be discussed in 
future works. 
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